BENOIT BLANCHON

CREATOR OF ARDUINOJSON

e

Mastering ArduinoJson 6

Efficient JSON serialization for embedded C++

Arduino THIRD EDITION

Contents

2.1
2.2
2.3

Contents
1 Introduction
1.1 About thisbook
1.1.1 Overview
1.1.2 Codesamples
1.1.3 What's new in the third edition
1.2 Introduction to JSON
1.2.1 Whatis JSON?
1.2.2 What is serialization?
1.2.3 What can you do with JSON?
124 Historyof JSON
1.25 Why is JSON so popular?
126 The JSONsyntax
1.2.7 Binary datain JSON
1.28 CommentsinJSON
1.3 Introduction to ArduinoJson
1.3.1 What ArduinoJsonis
1.3.2 What ArduinoJsonisnot
1.3.3 What makes ArduinoJson different?
1.3.4 Does size matter?
1.3.5 What are the alternatives to ArduinoJson? . .
1.3.6 How to install ArduinoJson
1.3.7 Theexamples
1.4 Summary
2 The missing C++ course

Why a C++ course?
Harvard and von Neumann architectures
Stack, heap, and globals
231 Globals.,

3

.......... 17

Contents
232 Heap o 35
233 Stack. 36

2.4 Pointers 38
2.4.1 Whatis a pointer? 38
2.4.2 Dereferencing a pointer 38
243 Pointersand arrayso 39
2.4.4 Taking the address of avariable 40
2.4.5 Pointer to class and struct 40
2.4.6 Pointertoconstant 41
247 Thenull pointer 43
248 Why use pointers? 44

2.5 Memory management Lo 45
251 malloc() and free() 45
252 newanddelete 45
2.5.3 Smart pointers. 46
254 RAIl . .. e 48

2.6 References 49
2.6.1 Whatis areference? 49
2.6.2 Differences with pointers 49
2.6.3 Referencetoconstant, 50
2.6.4 Rules of references L. 51
2.6.5 Common problems 51
2.6.6 Usage forreferences 52

2.7 Strings 53
2.7.1 How are the strings stored? 53
2.7.2 String literalsin RAM 53
2.7.3 String literalsin Flash 54
2.7.4 Pointer to the “globals” section. 56
2.7.5 Mutable string in “globals™o 56
276 Acopyinthestack 57
277 Acopyintheheap 58
2.7.8 A word about the Stringclass 59
2.7.9 Pass strings to functions 60

2.8 Summary 63

3 Deserialize with ArduinoJson 65

3.1 The example of this chapter 66

3.2 Deserializing anobject L 67
321 The JSON document 67

3.2.2 Placing the JSON document in memory 67

Contents
3.2.3 Introducing JsonDocument 63
3.2.4 How to specify the capacity? 68
3.2.5 How to determine the capacity? 69
3.2.6 StaticJsonDocument or DynamicJsonDocument? 70
3.2.7 Deserializing the JSON document 70

3.3 Extracting values from an object L. 72
3.3.1 Extractingvalues 72
3.32 Explicitcasts 72
3.3.3 When values are missing 73
3.3.4 Changing the default value 74

3.4 Inspecting an unknown object 75
3.4.1 Getting a reference to the object 75
3.42 Enumeratingthekeys 76
3.4.3 Detecting the type of value 76
3.4.4 Variant types and C++ types 77
3.45 Testing if a key exists in an object 78

3.5 Deserializing anarray 79
351 The JSON document 79
3.5.2 Parsingthearray 79
3.5.3 The ArduinoJson Assistant 81

3.6 Extracting values fromanarray 83
3.6.1 Retrieving elements by index 83
3.6.2 Alternative syntaxes 83
3.6.3 When complex values are missing 34

3.7 Inspecting an unknown array 86
3.7.1 Getting a reference to thearray 86
3.7.2 Capacity of JsonDocument for an unknown input 86
3.7.3 Number of elementsinanarray 87
3.7.4 lteration 87
3.7.5 Detecting the type of anelement 38

3.8 Thezero-copy mode 90
3.8.1 Definition 90
382 Anexample 90
3.8.3 Input buffer must stay in memory L. 92

3.9 Reading from read-only memory 93
391 Theexample 93
3.9.2 Duplication is requiredo 93
3.93 Practice 94

3.9.4 Other types of read-only input 95

Contents vii

3.10 Reading from astream 97
3.10.1 Reading fromafile L. 97
3.10.2 Reading from an HTTP response 98

311 Summary 106

4 Serializing with ArduinoJson 108

4.1 The example of thischapter 109

4.2 Creatinganobject 110
421 Theexample. 110
4.2.2 Allocating the JsonDocument 110
423 Adding memberso 111
424 Alternative syntaxo 111
425 Creating an empty object L. 112
426 Removingmembers 112
427 Replacing members 113

4.3 Creatinganarray 114
431 Theexample. o 114
4.3.2 Allocating the JsonDocument 114
433 Addingelements oo 115
434 Adding nested objects 115
435 Creating an empty array 116
43.6 Replacingelementso 116
43.7 Removingelementso 117

4.4 Writing to memory 118
441 Minified JSSON 118
4.4.2 Specifying (or not) the buffersize 118
443 Prettified JSSON 119
444 Measuring thelength 120
445 WritingtoaString 121
446 Casting a JsonVariant to a String 121

45 Writingtoastream 122
45.1 What's an output stream? 122
452 Writing to the serial port L. 123
453 Writingtoafile 124
454 \Writing to a TCP connection 124

4.6 Duplication of stringso 129
46.1 Anexample 129
46.2 Keysandvalues 130
4.6.3 Copy only occurs when adding values 130

4.6.4 ArduinoJson Assistant to the rescue 131

Contents
4.7 Inserting special valueso 133
47.1 Addingnull 133
4.7.2 Adding pre-formatted JSSON 133

4.8 Summary 135
5 Advanced Techniques 136
5.1 Introduction 137
5.2 Filtering theinput 138
5.3 Deserializing in chunks oL 142
5.4 JSON streaming 147
5.5 Automatic capacity 150
5.6 Fixing memory leakso 153
5.7 Using external RAM 155
5.8 Logging 158
59 Buffering 161
5.10 Custom readers and writers 164
5.11 Custom converters 169
5.12 MessagePack 175
5.13 Summary 178
6 Inside ArduinoJson 180
6.1 Why JsonDocument? 181
6.1.1 Memory representation 181
6.1.2 Dynamic memory 182
6.1.3 Memory pool 183
6.1.4 Strengths and weaknesses 184

6.2 Inside JsonDocument 185
6.2.1 Differences with Jsonvariant 185
6.2.2 Fixed capacity 185
6.2.3 String deduplication 186
6.2.4 Implementation of the allocator 186
6.2.5 Implementation of JsonDocument 188

6.3 Inside StaticJsonDocument 189
6.3.1 Capacity 189
6.3.2 Stackmemory 189
6.3.3 Limitation 190
6.3.4 Otherusages. 191
6.3.5 Implementation 191

6.4 Inside DynamicJsonDocument o e 192

6.4.1 Capacity 192

Contents
6.4.2 Shrinking a DynamicJsonDocument 192
6.4.3 Automatic capacity 193
6.44 Heapmemory 194
6.45 Allocator 194
6.4.6 Implementation 195
6.4.7 Comparison with StaticJsonDocument 195
6.4.8 How tochoose? 196

6.5 Inside Jsonvariant 197
6.5.1 Supported types 197
6.5.2 Reference semantics 197
6.5.3 Creating a JsonVariant 198
6.5.4 Implementationo 199
6.5.5 Two kindsofnull 200
6.5.6 Unsigned integers 201
6.5.7 Integer overflows 201
6.5.8 ArduinoJson’s configuration 202
6.5.9 lterating through a Jsonvariant. 203
6.5.10 The oroperator 205
6.5.11 The subscript operator 206
6.5.12 Member functions 206
6.5.13 Comparison operators, 209
6.5.14 Constreference 210

6.6 Inside JsonObject 211
6.6.1 Reference semantics 211
6.6.2 Nullobject 211
6.6.3 Createanobject 212
6.6.4 Implementation 212
6.6.5 Subscript operatoro 213
6.6.6 Member functions 214
6.6.7 Constreference 217

6.7 Inside JsonArrayo 218
6.7.1 Member functions 218
6.7.2 copyArray() 222

6.8 Insidetheparser 224
6.8.1 Invoking the parser 224
6.8.2 Twomodes 225
6.83 Pitfalls 225
6.8.4 Nesting limit 226
6.8.5 Quotes 227
6.8.6 Escapesequences, 228

Contents
6.8.7 Comments 229
6.8.8 NaN and Infinity 229
6.8.9 Stream 229
6.8.10 Filtering 230

6.9 Inside the serializer L. 231
6.9.1 Invoking the serializero 231
6.9.2 Measuring thelength 232
6.9.3 Escapesequences 233
6.9.4 Floattostring 233
6.9.5 NaN and Infinity 234

6.10 Miscellaneous 235
6.10.1 Thewversionmacro. 235
6.10.2 The private namespace 235
6.10.3 The public namespace 236
6.10.4 ArduinoJson.h and ArduinoJson.hpp. 236
6.10.5 The single header 237
6.10.6 Codecoverage 237
6.10.7 Fuzzing 237
6.10.8 Portability 238
6.10.9 Online compiler 239
6.10.10License 240

6.11 Summary 241

7 Troubleshooting 242

7.1 Introduction 243

7.2 Programcrashes 244
7.2.1 Undefined Behaviors 244
7.22 A bugin ArduinoJson? 244
723 Nullstring 245
724 Useafterfree 245
7.2.5 Return of stack variable address 247
7.2.6 Bufferoverflow 248
7.2.7 Stackoverflow 250
7.2.8 How to diagnose these bugs? 250
7.2.9 How to prevent these bugs? 253

7.3 Deserialization issues 255
7.3.1 EmptyInput 255
7.3.2 Incompletelnput 256
7.3.3 InvalidInput 258
7.3.4 NoMemory o o o . 262

Contents
7.35 TooDeep 263

7.4 Serialization issues 264
7.4.1 The JSON document is incomplete 264
7.4.2 The JSON document contains garbage 264
7.4.3 The serizalizationistooslow 265

7.5 Common error MeSSages e 267
7.5.1 no matching function for call to BasicJsonDocument() 267
7.5.2 Invalid conversion from const charxtoint. 267
7.5.3 No match for operator[] 268
7.5.4 Ambiguous overload for operator= 269
7.5.5 Call of overloaded function is ambiguous 270
7.5.6 The value is not usable in a constant expression 271

7.6 Askingforhelp. 272
T Summary 274
8 Case Studies 275
8.1 Configuration in SPIFFS 276
8.1.1 Presentation 276
8.1.2 The JSON document 276
8.1.3 The configuration class 277
8.1.4 Converters 278
8.1.5 Saving the configurationtoafile 282
8.1.6 Reading the configuration from afile 282
8.1.7 Sizing the JsonDocument 283
8.1.8 Conclusion 283

8.2 OpenWeatherMap on MKR1000 285
8.2.1 Presentation 285
8.2.2 OpenWeatherMap's APl 285
823 TheJSONresponse 286
8.2.4 Reducing the size of the document 288
8.2.5 The filter documento 289
826 Thecode 290
8.2.7 Summary 291

8.3 Redditon ESP8266 292
8.3.1 Presentation 292
8.3.2 Reddit's APl 293
8.3.3 Theresponse 204
834 Themainloop. 295
8.3.5 Sendingtherequest L. 296

8.3.6 Assembling the puzzle 296

Contents xii

8.3.7 Summary 298

8.4 JSON-RPCwith Kodi 299
8.4.1 Presentation 299
8.42 JSON-RPCRequest 300
8.4.3 JSON-RPCResponse 300
8.4.4 A JSON-RPC framework 301
8.45 JsonRpcRequest 302
8.4.6 JSONRPCRESPONSE 303
8.4.7 JsonRpcClient 304
8.4.8 Sending notificationto Kodi 305
8.4.9 Reading properties from Kodi 307
8.4.10 Summary 309

8.5 Recursive analyzero 311
8.5.1 Presentation 311
8.5.2 Read from the serial port 311
8.5.3 Flushing afteranerror 312
8.5.4 Testing the type of a Jsonvariant 313
8.5.5 Printingvalues. 314
85.6 Summary 316

9 Conclusion 317

Index 318

Deserialize with ArduinoJson

It is not the language that makes programs appear simple. It is the pro-
grammer that makes the language appear simple!
— Robert C. Martin, Clean Code: A Handbook of Agile Software

Craftsmanship

https://amzn.to/2WcXsBC
https://amzn.to/2WcXsBC

Chapter 3 Deserialize with ArduinoJson m

3.1 The example of this chapter

Now that you're familiar with JSON and C++, we're going to learn how to use Arduino-
Json. This chapter explains everything there is to know about deserialization. As we've
seen, deserialization is the process of converting a sequence of bytes into a memory
representation. In our case, it means converting a JSON document to a hierarchy of
C++ structures and arrays.

In this chapter, we'll use a JSON response from GitHub's
APl as an example. As you already know, GitHub is a
hosting service for source code; what you may not know,
however, is that GitHub provides a very powerful API that
allows you to interact with the platform.

Build your app on GitHub's platform

We could do many things with GitHub’s API, but in this e puttoge
chapter, we'll only focus on a small part. We'll get your ten
most popular repositories and display their names, numbers
of stars, and numbers of opened issues.

There are several versions of GitHub's API; we'll use the
latest one: the GraphQL API (or v4). We'll use this one rwwmmsma
because it allows us to get all the information we need

with only one query. It also returns much smaller responses

compared to v3, which is appreciable for embedded software.

If you want to run the example, you'll need a user account on GitHub and a personal
access token. Don't worry; we'll see that later.

Because GitHub only allows secure connections, we need a microcontroller that supports
HTTPS. We'll use the ESP8266 with the ESP8266HTTPClient as an example. If you
want to use ArduinoJson with EthernetClient, WiFiClient, or WiFiClientSecure, check
out the case studies in the last chapter.

Now that you know where we are going, we'll back up a few steps and start with a
basic example. Then, we'll progressively learn new things so that we'll finally be able
to interact with GitHub by the end of the chapter.

https://github.com/settings/tokens
https://github.com/settings/tokens

Chapter 3 Deserialize with ArduinoJson

3.2 Deserializing an object

We'll begin this tutorial with the simplest situation: a JSON document in memory.
More precisely, our JSON document resides in the stack in a writable location. This
fact is going to matter, as we will see later.

3.2.1 The JSON document

Our example is the repository information for ArduinoJson:

"name”: "ArduinoJson",

"stargazers": {
"totalCount”: 5246

},

"issues": {
"totalCount”: 15

As you see, it's a JSON object that contains two nested objects. It includes the name
of the repository, the number of stars, and the number of open issues.

3.2.2 Placing the JSON document in memory

In our C++ program, this JSON document translates to:

n

char input[] = "{\"name\":\"ArduinoJson\",\"stargazers\":{
"\"totalCount\":52463},\"issues\":{\"totalCount\":153}}"

In the previous chapter, we saw that this code creates a duplication of the string in
the stack. We know it's a code smell in production code, but it's a good example for
learning. This unusual construction creates a writable (i.e., not read-only) input string,
which is essential for your first contact with ArduinoJson.

Chapter 3 Deserialize with ArduinoJson m

3.2.3 Introducing JsonDocument

As we saw in the introduction, one of the unique features of ArduinoJson is its fixed
memory allocation strategy.

Here is how it works:
1. First, you create a JsonDocument to reserve a specified amount of memory.
2. Then, you deserialize the JSON document.
3. Finally, you destroy the JsonDocument, which releases the reserved memory.

The memory of the JsonDocument can be either in the stack or in the heap. The location
depends on the derived class you choose. If you use a StaticJsonDocument, it will be in
the stack; if you use a DynamicJsonDocument, it will be in the heap.

A JsonDocument is responsible for reserving and releasing the memory used by Arduino-
Json. It is an instance of the RAIl idiom that we saw in the previous chapter.

0 StaticJsonDocument in the heap

| often say that a StaticJsonDocument resides in the stack, but it's possible
to have it in the heap, for example, if a StaticJsonDocument is a member of
an object in the heap.

It's also possible to allocate a StaticJsonDocument with new, but | strongly
advise against it because you would lose the RAII feature.

3.2.4 How to specify the capacity?

When you create a JsonDocument, you must specify its capacity in bytes.

In the case of DynamicJsonDocument, you set the capacity via a constructor argument:

s N

DynamicJsonDocument doc(capacity); J

Since it's a constructor parameter, you can use a regular variable whose value can
change at run-time.

In the case of a StaticJsonDocument, you set the capacity via a template parameter:

~

StaticJsonDocument<capacity> doc;

-

Chapter 3 Deserialize with ArduinoJson m

As it's a template parameter, you cannot use a variable. Instead, you must use a
constant expression, which means that the value must be computed at compile-time.
As we said in the previous chapter, the compiler manages the stack, so it needs to
know the size of each variable when it compiles the program; that's why we must use
a constant expression here.

3.2.5 How to determine the capacity?

Now comes a tricky question for every new user of ArduinoJson: what should be the
capacity of my JsonDocument?

To answer this question, you need to know what ArduinoJson stores in the JsonDocument.
ArduinoJson needs to store a data structure that mirrors the hierarchy of objects in the
JSON document. In other words, the JsonDocument contains objects which relate to one
another the same way they do in the JSON document.

Therefore, the capacity of the JsonDocument highly depends on the complexity of the
JSON document. If it's just one object with few members, like our example, a few
dozens of bytes are enough. If it's a massive JSON document, like OpenWeatherMap's
response, up to a hundred kilobytes are needed.

ArduinoJson provides macros for computing precisely the capacity of the JsonDocument.
The macro to compute the size of an object is JSON_OBJECT_SIZE(). It takes one argu-
ment: the number of members in the object.

Here is how to compute the capacity for our sample document:

// Enough space for:

// + 1 object with 3 members

// + 2 objects with 1 member

const int capacity = JSON_OBJECT_SIZE(3) + 2 * JSON_OBJECT_SIZE(1);

On an ESP8266, a 32-bit processor, this expression evaluates to 80 bytes. The result

would be significantly smaller on an 8-bit processor; for example, it would be 40 bytes
on an ATmega328.

Chapter 3 Deserialize with ArduinoJson

A

A read-only input requires a higher capacity

In this part of the tutorial, we consider the case of a writeable input because
it simplifies the computation of the capacity. However, if the input is read-
only (for example, a const charx instead of char[]), you must increase the
capacity.

We'll talk about that later, in the section “Reading from read-only memory.”

3.2.6 StaticJsonDocument or DynamicJsonDocument?

Since our JsonDocument is small, we can keep it in the stack. Using the stack, we reduce
the executable size and improve the performance because we avoid the overhead due
to the management of the heap.

Here is our program so far:

-

const int capacity = JSON_OBJECT_SIZE(3) + 2*JSON_OBJECT_SIZE(1);
StaticJsonDocument<capacity> doc;

Of course, if the JsonDocument were bigger, it would make sense to move it to the heap.
We'll do that later.

!

Don’t forget const!

If you forget to write const, the compiler produces the following error:

error: the value of 'capacity' is not usable in a constant
< expression

Indeed, a template parameter is evaluated at compile-time, so it must be
a constant expression. By definition, a constant expression is computed at
compile-time, as opposed to a variable, which is computed at run-time.

3.2.7 Deserializing the JSON document

Now that the JsonDocument is ready, we can parse the input with deserializeJson():

DeserializationError err = deserializeJson(doc, input);

Chapter 3 Deserialize with ArduinoJson

deserializeJson() returns a DeserializationError that tells whether the operation was
successful. It can have one of the following values:

= DeserializationError::0k: the deserialization was successful.
= DeserializationError::EmptyInput: the input was empty or contained only spaces.

= DeserializationError::IncompleteInput: the input was valid but ended prema-
turely.

» DeserializationError::InvalidInput: the input was not a valid JSON document.
= DeserializationError::NoMemory: the JsonDocument was too small.

= DeserializationError::TooDeep: the input was valid, but it contained too many
nesting levels; we'll talk about that later in the book.

| listed all the error codes above so that you can understand how the library works;
however, | don't recommend using them directly in your code.

First, DeserializationError converts implicitly to bool, so you don't have to write
if (err != DeserializationError::0k); you can simply write if (err).

Second, DeserializationError has a c_str() member function that returns a string
representation of the error. It also has an f_str() member that returns a Flash string,
saving some space on Harvard architectures like ESP8266.

Thanks to these two features of DeserializationError, you can simply write:

if (err) {
Serial.print(F("deserializeJson() failed with code "));
Serial.println(err.f_str());

.

In the “Troubleshooting” chapter, we'll look at each error code and see what can cause
the error.

Chapter 3 Deserialize with ArduinoJson

3.3 Extracting values from an object

In the previous section, we created a JsonDocument and called deserializeJson(), so
now, the JsonDocument contains a memory representation of the JSON input. Let’s see
how we can extract the values.

3.3.1 Extracting values

There are multiple ways to extract the values from a JsonDocument; let’s start with the
simplest:

const charx name = doc["name"];
long stars = doc["stargazers”"]["totalCount”];
int issues = doc["issues"]["totalCount”];

This syntax leverages two C++ features:

1. Operator overloading: the subscript operator ([1) has been customized to mimic
a JavaScript object.

2. Implicit casts: the result of the subscript operator is implicitly converted to the
type of the variable.

3.3.2 Explicit casts

Not everyone likes implicit casts, mainly because they mess with overload resolution,
template parameter type deduction, and the auto keyword. That's why ArduinoJson
offers an alternative syntax with explicit type conversion.

the type of the variable from the type of the expression on the right. It is

0 The auto keyword
The auto keyword is a feature of C++11. In this context, it allows inferring
the equivalent of var in C# and Java.

Here is the same code adapted for this school of thought:

Chapter 3 Deserialize with ArduinoJson

auto name
auto stars
auto issues

doc["name"].as<const charx>();
doc["stargazers"]["totalCount”].as<long>();
doc["issues”]["totalCount”].as<int>();

0 Implicit or explicit?
We saw two different syntaxes to do the same thing. They are all equivalent

and lead to the same executable.

3.3.3 When values are missing

| prefer the implicit version because it allows using the “or” operator, as
we'll see. | use the explicit version only to solve ambiguities.

We saw how to extract values from an object, but we didn't do error checking. Let's
see what happens when a value is missing.

When you try to extract a value that is not present in the document, ArduinoJson

returns a default value. This value depends on the requested type:

Requested type

Default value

const charx nullptr
float, double 0.0

int, long.. 0

String "
JsonArray a null object
JsonObject a null object

The two last lines (JsonArray and JsonObject) happen when you extract a nested array
or object, we'll see that in a later section.

0 No exceptions
ArduinoJson never throws exceptions. Exceptions are an excellent C++ fea-
ture, but they produce large executables, which is unacceptable for micro-

controllers.

Chapter 3 Deserialize with ArduinoJson

3.3.4 Changing the default value

Sometimes, the default value from the table above is not what you want. In this
situation, you can use the operator | to change the default value. | call it the “or”
operator because it provides a replacement when the value is missing or incompatible.

Here is an example:

P

// Get the port or use 80 if it's not specified
short tcpPort = config["port”] | 80;

This feature is handy to specify default configuration values, like in the snippet above,
but it is even more helpful to prevent a null string from propagating.

Here is an example:

// Copy the hostname or use "arduinojson.org" if it's not specified
char hostname[32];
strlcpy(hostname, config[”hostname”] | "arduinojson.org"”, 32);

.

strlcpy(), a function that copies a source string to a destination string, crashes if the
source is null. Without the operator |, we would have to use the following code:

char hostname[32];
const char* configHostname = config["hostname”];
if (configHostname != nullptr)
strlcpy(hostname, configHostname, 32);
else
strcpy (hostname, "arduinojson.org”);

. J

We'll see a complete example that uses this syntax in the case studies.

Chapter 3 Deserialize with ArduinoJson

3.4 Inspecting an unknown object

In the previous section, we extracted the values from an object that we knew in advance.
Indeed, we knew that the JSON object had three members: a string named “name,” a
nested object named “stargazers,” and another nested object named “issues.” In this
section, we'll see how to inspect an unknown object.

3.4.1 Getting a reference to the object

So far, we have a JsonDocument that contains a memory representation of the input.
A JsonDocument is a very generic container: it can hold an object, an array, or any
other value allowed by JSON. Because it's a generic container, JsonDocument only offers
methods that apply unambiguously to objects, arrays, and any other supported type.

For example, we saw that we could call the subscript operator ([1), and the JsonDocument
happily returned the associated value. However, the JsonDocument cannot enumerate the
object's member because it doesn't know, at compile-time, whether it should behave
as an object or an array.

To remove the ambiguity, we must get the object within the JsonDocument. We do that
by calling the member function as<JsonObject>(), like so:

// Get a reference to the root object
JsonObject obj = doc.as<JsonObject>();

And now, we're ready to enumerate the members of the object!

A JsonObject has reference semantics

JsonObject is not a copy of the object in the document; on the contrary,
it's a reference to the object in the JsonDocument. When you modify the
JsonObject, you also alter the JsonDocument.

In a sense, we can say that JsonObject is a smart pointer. It wraps a
pointer with a class that is easy to use. Unlike the other smart pointers
we talked about in the previous chapter, JsonObject doesn't release the
memory for the object when it goes out of scope because that's the role of
the JsonDocument.

Chapter 3 Deserialize with ArduinoJson

3.4.2 Enumerating the keys

Now that we have a JsonObject, we can look at all the keys and their associated values.
In ArduinoJson, a key-value pair is represented by the type JsonPair.

We can enumerate all pairs with a simple for loop:

// Loop through all the key-value pairs in obj
for (JsonPair p : obj) {

p.key() // is a JsonString

p.value() // is a JsonVariant

Notice these three points about this code:
1. | explicitly used a JsonPair to emphasize the type, but you can use auto.

2. The value associated with the key is a JsonVariant, a type that can represent any
JSON type.

3. You can convert the JsonString to a const charx with JsonString::c_str().

o When C++11 is not available

The code above leverages a C++11 feature called “range-based for loop".
If you cannot enable C++11 on your compiler, you must use the following
syntax:

for (JsonObject::iterator it=obj.begin(); it!=obj.end(); ++it) {
it->key() // is a JsonString
it->value() // is a JsonVariant

3.4.3 Detecting the type of value

Like JsonObject, JsonVariant is a reference to a value stored in the JsonDocument.
However, Jsonvariant can refer to any JSON value: string, integer, array, object.. A
JsonVariant is returned when you call the subscript operator, like obj["text"] (we'll see
that this statement is not entirely correct, but for now, we can say it's a JsonVariant).

Chapter 3 Deserialize with ArduinoJson

To know the actual type of the value in a JsonVariant, you need to call
JsonVariant::is<T>(), where T is the type you want to test.

For example, the following snippet checks if the value is a string:

// Is it a string?
if (p.value().is<const char*>()) {
// Yes!
// We can get the value via implicit cast:
const charx s = p.value();
// Or, via explicit method call:
auto s = p.value().as<const char*>();

.

If you use this with our sample document, you'll see that only the member “name”
contains a string. The two others are objects, as is<JsonObject>() would confirm.

3.4.4 Variant types and C++ types

There are a limited number of types that a variant can use: boolean, integer, float,
string, array, and object. However, different C++ types can store the same JSON type;
for example, a JSON integer could be a short, an int, or a long in the C++ code.

The following table shows all the C++ types you can use as a parameter for
JsonVariant::is<T>() and JsonVariant::as<T>().

Variant type | Matching C++ types

Boolean bool

Integer int, long, short, char (all signed and unsigned)
Float float, double

String const char*, String, std::string

Array JsonArray

Object JsonObject

0 More on arduinojson.org
The complete list of types that you can use as a parameter for
JsonVariant::is<T>() can be found in the API| Reference.

https://arduinojson.org/v6/api/jsonvariant/is/

Chapter 3 Deserialize with ArduinoJson

3.4.5 Testing if a key exists in an object

If you have an object and want to know whether a key is present or not, you can call
JsonObject: :containsKey().

Here is an example:

~

// Is there a value named "text"” in the object?
if (obj.containsKey("text")) {
// Yes!

However, | don't recommend using this function because you can avoid it most of the
time.

Here is an example where we can avoid containsKey():

// Is there a value named "error” in the object?
if (obj.containsKey("error”)) {

// Get the text of the error

const charx error = obj["error"];

/...

y J

The code above is not horrible, but it can be simplified and optimized if we just remove
the call to containsKey():

// Get the text of the error
const char* error = obj["error"];

// Is there an error after all?
if (error != nullptr) {
/] ...

.

This code is faster and smaller because it only looks for the key “error” once, whereas
the previous code did it twice.

Chapter 3 Deserialize with ArduinoJson

3.5 Deserializing an array

3.5.1 The JSON document

We've seen how to parse a JSON object from GitHub's response; it's time to move up
a notch by parsing an array of objects. Indeed, our goal is to display the top 10 of
your repositories, so there will be up to 10 objects in the response. In this section, we'll
suppose that there are only two repositories, but you and | know that it will be more in
the end.

Here is the new sample JSON document:

L
{
"name”: "ArduinoJson",
"stargazers"”: {
"totalCount": 5246
Be
"issues": {
"totalCount”: 15
3
Yo
{
"name"”: "pdfium-binaries”,
"stargazers"”: {
"totalCount”: 249
Be
"issues": {
"totalCount”: 12
3
3
]

3.5.2 Parsing the array

Let’s deserialize this array. You should now be familiar with the process:

Chapter 3 Deserialize with ArduinoJson

1. Put the JSON document in memory.

2. Compute the size with JSON_ARRAY_SIZE().
3. Allocate the JsonDocument.

4. Call deserializeJson().

Let's do it:

// Put the JSON input in memory (shortened)

// Compute the required size

const int capacity = JSON_ARRAY_SIZE(2)
+ 2%JSON_OBJECT_SIZE(3)
+ 4xJSON_OBJECT_SIZE(1);

// Allocate the JsonDocument
StaticJsonDocument<capacity> doc;

// Parse the JSON input
DeserializationError err = deserializeJson(doc, input);

// Parse succeeded?

if (err) {
Serial.print(F("deserializeJson() returned "));
Serial.println(err.f_str());
return;

char inputl] = "[{\"name\":\"ArduinoJson\",\"stargazers\":.

n,
’

As said earlier, a hard-coded input like that would never happen in production code,

but it's a good step for your learning process.

You can see that the expression for computing the capacity of the JsonDocument is quite

complicated:

= There is one array of two elements: JSON_ARRAY_SIZE(2)

= In this array, there are two objects with three members: 2xJSON_OBJECT_SIZE(3)

= |In each object, there are two objects with one member: 4xJSON_OBJECT_SIZE(1)

Chapter 3 Deserialize with ArduinoJson

3.5.3 The ArduinoJson Assistant

For complex JSON documents, the expression to compute the capacity of the
JsonDocument becomes impossible to write by hand. | did it above so that you un-
derstand the process, but in practice, we use a tool to do that.

This tool is the “ArduinoJson Assistant.” You can use it online at arduinojson.org/
assistant.

Json Assistant

ArduinoJson Assistant

IsonDocument

Configuration JSON Size Program
Step 3: Size
Data structures 192 Bytes needed to stores the JSON objects and arrays in memory @
Strings 0 Bytes needed to stores the strings in memory @
Total (minimum) 192 Minimum capacity for the JsonDocument.
Total (recommended) 192 Including some slack in case the strings change, and rounded to a power of two
» Tweaks (advanced users only)

ArduinoJson is a JSON library for embedded C++. Newsletter

simple, efficient, and versatile. :
Your email Subscribe

G

Using the ArduinoJson Assistant is straightforward:
= In step 1, you configure the Assistant
— Processor: ESP8266
— Mode: Deserialize
— Input type: char[]
= In step 2, you enter the JSON document that you want to parse.

= Step 3 shows how big show the JsonDocument be. You can tweak the configuration
and see the effect on the required size.

» Step 4 shows a sample program that extracts all values from the document.

https://arduinojson.org/assistant/
https://arduinojson.org/assistant/

Chapter 3 Deserialize with ArduinoJson

Don’t worry; the Assistant respects your privacy: it computes the expression locally in
the browser; it doesn’t send your JSON document to a web service.

Chapter 3 Deserialize with ArduinoJson

3.6 Extracting values from an array

3.6.1 Retrieving elements by index

The process of extracting the values from an array is very similar to the one for objects.
The only difference is that arrays are indexed by an integer, whereas objects are indexed
by a string.

To get access to the repository information, we need to get the JsonObject from the
JsonDocument, except that, this time, we'll pass an integer to the subscript opera-
tor (L1).

// Get the first element of the array
JsonObject repo@ = doc[0];

// Extract the values from the object

const charx name = repo@["'name”];
long stars = repo@["stargazers"]["totalCount"”];
int issues = repo@["issues”"]["totalCount”];

Of course, we could have inlined the repo@ variable (i.e., write doc[@]["name"”] each
time), but it would cost an extra lookup for each access to the object.

3.6.2 Alternative syntaxes

It may not be obvious, but the program above uses implicit casts. Indeed, the subscript
operator ([]) returns a JsonVariant that is implicitly converted to a JsonObject.

Again, some programmers don't like implicit casts, that is why ArduinoJson offers an
alternative syntax with as<7>(). For example:

auto repo@ = arr[0].as<JsonObject>();

All of this should sound very familiar because we've seen the same for objects.

Chapter 3 Deserialize with ArduinoJson

3.6.3 When complex values are missing

When we learned how to extract values from an object, we saw that if a member is
missing, a default value is returned (for example, @ for an int). Similarly, ArduinoJson
returns a default value when you use an index that is out of the range of an array.

Let's see what happens in our case:

P

// Get an object out of array's range
JsonObject repo666 = arr[666];

The index 666 doesn't exist in the array, so a special value is returned: a null JsonObject.
Remember that JsonObject is a reference to an object stored in the JsonDocument. In
this case, there is no object in the JsonDocument, so the JsonObject points to nothing:
it’s a null reference.

You can test if a reference is null by calling isNull():

if (repo666.isNull()) ...

Alternatively, you can compare to nullptr (but not NULL!), like so:

if (repo666 == nullptr) ...

A null JsonObject evaluates to false, so you can check that it's not null like so:

P

if (repo666) ...

. J

A null JsonObject looks like an empty object, except that you cannot modify it. You
can safely call any function of a null JsonObject; it simply ignores the call and returns
a default value. Here is an example:

J

-

// Get a member of a null JsonObject
int stars = repo666["stargazers”]["totalCount"];
// stars == 0

The same principles apply to null JsonArray, JsonVariant, and JsonDocument.

Chapter 3 Deserialize with ArduinoJson

0 The null object design pattern

What we just saw is an implementation of the null object design pattern.
Instead of returning nullptr when the value is missing, a placeholder is
returned: the “null object.” This object has no behavior, and all its methods
fail. In short, this pattern saves you from constantly checking that a result
is not null.

If ArduinoJson didn’t implement this pattern, we could not write the fol-
lowing statement because any missing value would crash the program.

int stars = arr[0]["stargazers”"]["totalCount”];

https://en.wikipedia.org/wiki/Null_object_pattern

Chapter 3 Deserialize with ArduinoJson m

3.7 Inspecting an unknown array

In the previous section, our example was very straightforward because we knew that the
JSON array had precisely two elements, and we knew the content of these elements. In
this section, we'll see what tools are available when you don’t know the content of the
array.

3.7.1 Getting a reference to the array

Do you remember what we did when we wanted to enumerate the key-value pairs of an
object? We began by calling JsonDocument : :as<JsonObject>() to get a reference to the
root object.

Similarly, if we want to enumerate all the elements of an array, the first thing we have
to do is to get a reference to it:

// Get a reference to the root array
JsonArray arr = doc.as<JsonArray>();

Again, JsonArray is a reference to an array stored in the JsonDocument; it's not a copy of
the array. When you apply changes to the JsonArray, they affect the JsonDocument.

3.7.2 Capacity of JsonDocument for an unknown input

If you know absolutely nothing about the input (which is strange), you need to determine
a memory budget allowed for parsing the input. For example, you could decide that
10KB of heap memory is the maximum you accept to spend on JSON parsing.

This constraint looks terrible at first, especially if you're a desktop or server application
developer; but, once you think about it, it makes complete sense. Indeed, your program
will run in a loop on dedicated hardware. Since the hardware doesn't change, the
amount of memory is always the same. Having an elastic capacity would just produce
a larger and slower program with no additional value; it would also increase the heap
fragmentation, which we must avoid at all costs.

However, most of the time, you know a lot about your JSON document. Indeed, there
are usually a few possible variations in the input. For example, an array could have
between zero and four elements, or an object could have an optional member. In that

Chapter 3 Deserialize with ArduinoJson

case, use the ArduinoJson Assistant to compute the size of each variant and pick the
biggest.

3.7.3 Number of elements in an array

The first thing you want to know about an array is the number of elements it contains.
This is the role of JsonArray::size():

s ~

// Get the number of elements in the array
int count = arr.size();

. J

As the name may be confusing, let me clarify: JsonArray::size() returns the number
of elements, not the memory consumption. If you want to know how many bytes of
memory are used, call JsonDocument: :memoryUsage():

// How many bytes are used in the document
int memoryUsed = doc.memoryUsage();

Note that there is also a JsonObject: :size() that returns the number of key-value pairs
in an object, but it's rarely helpful.

3.7.4 lteration

Now that you have the size of the array, you probably want to write the following
code:
// BAD EXAMPLE, see below
for (int i=0; i<arr.size(); it++) {
JsonObject repo = arr[il;
const char* name = repo["name”];
// etc.

The code above works but is terribly slow. Indeed, ArduinoJson stores arrays as linked
lists, so accessing an element at a random location costs 0(n); in other words, it takes
n iterations to get to the nth element. Moreover, the value of JsonArray::size() is not
cached, so it needs to walk the linked list too.

https://arduinojson.org/assistant/

Chapter 3 Deserialize with ArduinoJson

That's why it is essential to avoid arr[i] and arr.size() in a loop. Instead, you should
use the iteration feature of JsonArray, like so:

// Walk the JsonArray efficiently

for (JsonObject repo : arr) {
const char* name = repo["name”];
// etc.

. J

With this syntax, the internal linked list is walked only once, and it is as fast as it gets.

| used a JsonObject in the loop because | knew that the array contains objects. If it's
not your case, you can use a JsonVariant instead.

0 When C++11 is not available

The code above leverages a C++11 feature called “range-based for loop.”
If you cannot enable C++11 on your compiler, you must use the following
syntax:

for (JsonArray::iterator it=arr.begin(); it!=arr.end(); ++it) {
JsonObject repo = *it;
const char* name = repo["name”];
// etc.

3.7.5 Detecting the type of an element

We test the type of array elements the same way we did for object members: using
JsonVariant: :is<T>().

Here is an example:

// Is the first element an integer?
if (arr[0].is<int>()) {

// Yes!
int value = arr[0];
// ...

Chapter 3 Deserialize with ArduinoJson

// Same in a loop
for (JsonVariant elem : arr) {
// Is the current element an object?
if (elem.is<JsonObject>()) {
JsonObject obj = elem;
/] ...

There is nothing new here, as it's exactly what we saw for object members.

Chapter 3 Deserialize with ArduinoJson m

3.8 The zero-copy mode

3.8.1 Definition

At the beginning of this chapter, we saw how to parse a JSON document from a
writable source. Indeed, the input variable was a char[] in the stack, and therefore, it
was writable. | told you that this fact would matter, and it's time to explain.

ArduinoJson behaves differently with writable inputs and read-only inputs.

When the argument passed to deserializeJson() is of type charx or char[]1, ArduinoJson
uses a mode called “zero-copy.” It has this name because the parser never makes any
copy of the input; instead, it stores pointers pointing inside the input buffer.

In the zero-copy mode, when a program requests the content of a string member,
ArduinoJson returns a pointer to the beginning of the string in the input buffer. To
make it possible, ArduinoJson inserts null-terminators at the end of each string; it is
the reason why this mode requires the input to be writable.

0 The jsmn library

As we said at the beginning of the book, jsmn is a C library that detects
the tokens in the input. The zero-copy mode is very similar to the behavior
of jsmn.

This information should not be a surprise because the first version of Ar-
duinoJson was just a C++ wrapper on top of jsmn.

3.8.2 An example

To illustrate how the zero-copy mode works, let's have a look at a concrete example.
Suppose we have a JSON document that is just an array containing two strings:

[“hip“,"hop“]

Chapter 3 Deserialize with ArduinoJson

And let's says that the variable is a char[] at address 0x200 in memory:

char input[] = "[\"hip\",\"hop\"]1";
// We assume: &input == 0x200

After parsing the input, when the program requests the value of the first element,
ArduinoJson returns a pointer whose address is 0x202, which is the location of the
string in the input buffer:

deserializeJson(doc, input);

const charx hip = doc[0];
const char* hop = doc[1];
// Now: hip == 0x202 && hop == 0x208

We naturally expect hip to be "hip” and not "hip\"”,\"hop\"]"; that's why ArduinoJson
adds a null-terminator after the first p. Similarly, we expect hop to be "hop” and not
"hop\"]", so it adds a second terminator.

The picture below summarizes this process.

Input buffer before parsing

T R [T o [[T [w oo [~ TTe]

A

0x200

deserializeJson()

Input buffer after parsing

S 0 P B R - DR
A A

0x202 0x208

Adding null-terminators is not the only thing the parser modifies in the input buffer.
It also replaces escaped character sequences, like \n, by their corresponding ASCII
characters.

| hope this explanation gives you a clear understanding of what the zero-copy mode is
and why the input is modified. It is a bit of a simplified view, but the actual code is
very similar.

Chapter 3 Deserialize with ArduinoJson

3.8.3 Input buffer must stay in memory

As we saw, in the zero-copy mode, ArduinoJson returns pointers to the input buffer. This
can only work if the input buffer is still in memory when the pointer is dereferenced.

If a program dereferences the pointer after the destruction of the input buffer, it is very
likely to crash instantly, but it could also work for a while and crash later, or it could
have nasty side effects. In the C++ jargon, this is what we call an “Undefined Behavior”;
we'll talk about that in Troubleshooting.

Here is an example:
// Declare a pointer
const char xhip;

// New scope

{
// Declare the input in the scope
char inputl[] = "[\"hip\",\"hop\"1";

// Parse input
deserializeJson(doc, input);
JsonArray arr = doc.as<JsonArray>();

// Save a pointer
hip = arr[0];
}

// input is destructed now

// Dereference the pointer
Serial.println(hip); // <- Undefined behavior

o Common cause of bugs
Dereferencing a pointer to a destructed variable is a common cause of bugs.
To use a JsonArray or a JsonObject, you must keep the JsonDocument alive.

In addition, when using the zero-copy mode, you must also keep the input
buffer in memory.

Chapter 3 Deserialize with ArduinoJson

3.9 Reading from read-only memory

3.9.1 The example

We saw how ArduinoJson behaves with a writable input and how the zero-copy mode
works. It's time to see what happens when the input is read-only.

Let's go back to our previous example except that, this time, we change its type from
char[] to const char*:

const char* input = "[\"hip\",\"hop\"]";

Previously, we had the whole string duplicated in the stack, but it's not the case anymore.
Instead, the stack only contains the pointer input pointing to the beginning of the
string.

3.9.2 Duplication is required

In the zero-copy mode, ArduinoJson stores pointers pointing inside the input buffer.
We saw that it has to replace some characters of the input with null-terminators.

With a read-only input, ArduinoJson cannot do that anymore, so it needs to make copies
of "hip” and "hop”. Where do you think the copies would go? In the JsonDocument, of
course!

In this mode, the JsonDocument holds a copy of each string, so we need to increase its
capacity. Let's do the computation for our example:

1. We still need to store an object with two elements, that's JSON_ARRAY_SIZE(2).

2. We have to make a copy of the string "hip”, that's 4 bytes, including the null-
terminator.

3. We also need to copy the string "hop”, that's 4 bytes too.

The required capacity is:

const int capacity = JSON_ARRAY_SIZE(2) + 8;

Chapter 3 Deserialize with ArduinoJson

In practice, you should not use the exact length of the strings. It's safer to add a bit of
slack in case the input changes. My advice is to add 10% to the longest possible string,
which gives a reasonable margin.

@ Use the ArduinoJson Assistant

- The ArduinoJson assistant also computes the number of bytes required for
the duplication of strings. It shows this value in the “String” row in step 3.

Json Assistant

ArduinoJson Assistant

JsonDocument

JSON Size

Configurati ram
Step 3: Size

Data structures 32 Bytes needed to stores the JSON objects and arrays in memory @

Strings 8 Bytes needed to stores the strings in memory @ | -

Total (minimum) 40 Minimum capacity for the JsonDocument.

Total (recommended) 64 Including some slack in case the strings change, and rounded to a power of two

» Tweaks (advanced users only)

ArduinoJson is a JSON library for embedded C++. Newsletter

Simple, efficient, and versatile.
Your email Subscribe

G

3.9.3 Practice

Apart from the capacity of the JsonDocument, we don't need to change anything to the
program.

Here is the complete hip-hop example with a read-only input:

// A read-only input
const char* input = "[\"hip\",\"hop\"]";

// Allocate the JsonDocument
const int capacity = JSON_ARRAY_SIZE(2) + 8;

Chapter 3 Deserialize with ArduinoJson

StaticJsonDocument<capacity> doc;

// Parse the JSON input.
deserializeJson(doc, input);

// Extract the two strings.
const charx hip = doc[0];
const char* hop = doc[1];

// How much memory is used?
int memoryUsed = doc.memoryUsage();

.

| added a call to JsonDocument : :memoryUsage (), which returns the current memory usage.
Do not confuse it with the capacity, which is the maximum size.

If you compile this program on an ESP8266, the variable memoryUsed will contain 40, as
the ArduinoJson Assistant predicted.

3.9.4 Other types of read-only input

const charx is not the sole read-only input that ArduinoJson supports. For example,
you can also use a String:

// Put the JSON input in a String
String input = "[\"hip\",\"hop\"1";

It's also possible to use a Flash string, but there is one caveat. As we said in the C++
course, ArduinoJson needs a way to figure out if the input string is in RAM or Flash.
To do that, it expects a Flash string to have the type const __FlashStringHelperx. If
you declare a char[] PROGMEM, ArduinoJson will not consider it as Flash string, unless
you cast it to const __FlashStringHelperx.

Alternatively, you can use the F() macro, which casts the pointer to the right type:

// Put the JSON input in the Flash
auto input = F("[\"hip\",\"hop\"1");
// (auto is deduced to const __FlashStringHelperx)

Chapter 3 Deserialize with ArduinoJson m

As we saw in the previous chapter, using F() and PROGMEM strings only makes sense on
Harvard architectures, such as AVR and ESP8266.

In the next section, we'll see another kind of read-only input: streams.

Chapter 3 Deserialize with ArduinoJson

3.10 Reading from a stream

In the Arduino jargon, a stream is a volatile source of data, like the serial port or
a TCP connection. Contrary to a memory buffer, which allows reading any bytes at
any location (after all, that's what the acronym “RAM" means), a stream only allows
reading one byte at a time and cannot rewind.

The Stream abstract class materializes this concept. Here are examples of classes derived
from Stream:

Library Class Well known instances
Core HardwareSerial Serial, Seriall..
BluetoothSerial SerialBT
ESP File
WiFiClient
WiFiClientSecure
Ethernet EthernetClient
EthernetUDP
GSM GSMClient
SD File
SoftwareSerial | SoftwareSerial
WiFi WiFiClient
Wire TwoWire Wire

@ std::istream

- In the C++ Standard Library, an input stream is represented by the class
std: :istream.

ArduinoJson can use both Stream and std::istream.

3.10.1 Reading from a file

As an example, we'll create a program that reads a JSON file stored on an SD card.
We suppose that this file contains the array we used as an example earlier.

The program will just read the file and print the information for each repository.

Chapter 3 Deserialize with ArduinoJson m

Here is the relevant part of the code:

-

// Open file
File file = SD.open("repos.txt");

// Parse directly from file
deserializeJson(doc, file);

// Loop through all the elements of the array

for (JsonObject repo : doc.as<JsonArray>()) {
// Print the name, the number of stars, and the number of issues
Serial.println(repo[”name”].as<const charx>());
Serial.println(repo[“stargazers”]["totalCount”].as<int>());
Serial.println(repo[”issues”]["totalCount”].as<int>());

A few things to note:

1. | used the .txt extension instead of .json because the FAT file system is limited
to three characters for the file extension.

2. | used the ArduinoJson Assistant to compute the capacity (not shown above
because it's not the focus of this snippet).

3. | called JsonVariant::as<T>() to pick the right overload of Serial.println().

You can find the complete source code for this example in the folder ReadFromSdCard of
the zip file.

You can apply the same technique to read a file in SPIFFS or LittleFS, as we'll see in
the case studies.

3.10.2 Reading from an HTTP response

Now is the time to parse the actual data coming from GitHub’s API!

As | said, we need a microcontroller that supports HTTPS, so we'll use an ESP8266
with the library “ESP8266HTTPClient.” Don't worry if you don't have a compatible
board; we'll see other configurations in the case studies.

Chapter 3 Deserialize with ArduinoJson m

Access token

Before using this API, you need a GitHub account and a “personal access token.” This
token grants access to the GitHub API from your program; we might also call it an
“API key." To create it, open GitHub in your browser and follow these steps:

Go to your personal settings.

Go in “Developer settings.”

Go in “Personal access token."

Click on “Generate a new token."

Enter a name, like “ArduinoJson tutorial.”

Check the scopes (i.e., the permissions); we only need “public_repo.”

Click on “Generate token.”

© N o o A~ w b=

GitHub shows the token.

You can see each step in the picture below:

Chapter 3 Deserialize with ArduinoJson 100

GitHub won't show the token again, so don't waste any second and write it in the source
code:

s ~

#define GITHUB_TOKEN "d4a0354a68d565189cfc12ef1530b7566570f6f1"

L

With this token, our program can authenticate with GitHub's API. All we need to do is
to add the following HTTP header to each request:

p

Authorization: bearer d4a0354a68d565189cfc12ef1530b7566570f6f1 J

Certificate validation

Because | don’t want to make this example more complicated than necessary, I'll disable
the SSL certificate validation, like so:

WiFiClientSecure client;

client.setInsecure();

. J

What could be the consequence? Since the program doesn't verify the certificate, it
cannot be sure of the server’'s authenticity, so it could connect to a rogue serve that
pretends to be api.github.com. This is indeed a serious security breach because the
program would send your Personal Access Token to the rogue server. Fortunately, this
token has minimal permissions: it only provides access to public information. However,
in a different project, the consequences could be disastrous.

If your project presents any security or privacy risk, you must enable SSL certificate
validation. WiFiClientSecure provides several validation methods. For a simple solution,
use setFingerprint(), but you'll have to update the fingerprint frequently. For a more
robust solution, use setTrustAnchors() and make sure your clock is set to the current
time and date.

The request
To interact with the new GraphQL API, we need to send a POST request (instead of the
more common GET request) to the URL https://api.github.com/graphql.

The body of the POST request is a JSON object that contains one string named “query.”
This string contains a GraphQL query. For example, if we want to get the name of the

https://api.github.com/graphql

Chapter 3 Deserialize with ArduinoJson 101

authenticated user, we need to send the following JSON document in the body of the
request:

"query": "{viewer{name}}"

The GraphQL syntax and the details of GitHub's API are obviously out of the scope of

this book, so I'll simply say that a GraphQL query allows you to select the information
you want within the universe of information that the API exposes.

In our case, we want to retrieve the names, numbers of stars, and numbers of opened is-
sues of your ten most popular repositories. Here is the corresponding GraphQL query:

P

{
viewer {
name
repositories(ownerAffiliations: OWNER,
orderBy: {
direction: DESC,
field: STARGAZERS
Yo
first: 10) {
nodes {
name
stargazers {
totalCount
3
issues(states: OPEN) {
totalCount
3
3
3
3
}

. J

To find the correct query, | used the GraphQL API Explorer. With this tool, you can test
GraphQL queries in your browser. You can find it in GitHub's APl documentation.

We'll reduce this query to a single line to save some space and bandwidth; then, we'll
put it in the “query” string in the JSON object. Since we haven't talked about JSON

https://developer.github.com/v4/explorer/

Chapter 3 Deserialize with ArduinoJson 102

serialization yet, we'll hard-code the string in the program.

To summarize, here is how we will send the request:

HTTPClient http;

http.begin(client, "https://api.github.com/graphql”);

http.addHeader ("Authorization”, "bearer " GITHUB_TOKEN));
http.POST("{\"query\":\"{viewer{name, repositories(ownerAffiliations:...");

The response

After sending the request, we must get a reference to the Stream:

// Get a reference to the stream in HTTPClient
Stream& response = http.getStream();

As you see, we call getStream() to get the internal stream (we could have used client
directly). Unfortunately, when we do that, we bypass the part of ESP8266HT TPClient
that handles chunked transfer encoding. To make sure GitHub doesn’t return a chunked
response, we must set the protocol to HTTP 1.0:

// Downgrade to HTTP 1.0 to prevent chunked transfer encoding
http.useHTTP10(true);

.

Because the protocol version is part of the request, we must call useHTTP10() before
calling POST().

Now that we have the stream, we can pass it to deserializeJson():

// Allocate the JsonDocument in the heap
DynamicJsonDocument doc(2048);

// Deserialize the JSON document in the response
deserializeJson(doc, response);

Here, we used a DynamicJsonDocument because it is too big for the stack. As usual,
| used the ArduinoJson Assistant to compute the capacity.

https://en.wikipedia.org/wiki/Chunked_transfer_encoding

Chapter 3 Deserialize with ArduinoJson 103

The body contains the JSON document that we want to deserialize. It's a little more
complicated than what we saw earlier. Indeed, the JSON array is not at the root but
under data.viewer.repositories.nodes, as you can see below

{
"data": {
"viewer": {
"name"”: "Benoit Blanchon",
"repositories”: {
"nodes”: [
{
"name"”: "ArduinoJson”,
"stargazers"”: {
"totalCount”: 5246
Yo
"issues”: {
"totalCount”: 15
3
Yo
{
"name”: "pdfium-binaries”,
"stargazers"”: {
"totalCount”: 249
e
"issues": {
"totalCount”: 12
3
Yo
]
3
3
3
}

So, compared to what we saw earlier, the only difference is that we'll have to walk
several objects before getting the reference to the array. The following line will do:

JsonArray repos = doc[”data"]["viewer"]["repositories”]["nodes"];

Chapter 3 Deserialize with ArduinoJson 104

The code

| think we have all the pieces, let's assemble this puzzle:

// Prepare the WiFi client
WiFiClientSecure client;
client.setInsecure();

// Send the request

HTTPClient http;

http.begin(client, "https://api.github.com/graphql”);
http.useHTTP10(true);

http.addHeader ("Authorization”, "bearer " GITHUB_TOKEN));
http.POST("{\"query\":\"{viewer{name, repositories(ownerAffiliations:...");

// Get a reference to the stream in HTTPClient
Stream& response = http.getStream();

// Allocate the JsonDocument in the heap
DynamicJsonDocument doc(2048);

// Deserialize the JSON document in the response
deserializeJson(doc, response);

// Get a reference to the array
JsonArray repos = doc["data”]J["viewer"]["repositories”]["nodes"];

// Print the values

for (JsonObject repo : repos) {
Serial.print(” - ");
Serial.print(repol["name”].as<char *>());
Serial.print(”, stars: ");
Serial.print(repo[”stargazers”]["totalCount”].as<long>());
Serial.print(”, issues: ");
Serial.println(repo["issues”]["totalCount”].as<int>());

// Disconnect
http.end();

Chapter 3 Deserialize with ArduinoJson 105

If all works well, this program should print something like so:

P

- ArduinoJson, stars: 5246, issues: 15

- pdfium-binaries, stars: 249, issues: 12

- ArduinoStreamUtils, stars: 131, issues: 3

- ArduinoTrace, stars: 125, issues: 1

- WpfBindingErrors, stars: 77, issues: 4

- dllhelper, stars: 27, issues: @

- cpp4arduino, stars: 26, issues: 1

- HighSpeedMvvm, stars: 15, issues: @

- SublimeText-HighlightBuildErrors, stars: 12, issues: 4
- BuckOperator, stars: 10, issues: @

. J

You can find the complete source code of this example in the GitHub folder in the zip file
provided with the book. Compared to what is shown above, the source code handles the
connection to the WiFi network, check errors, and uses Flash strings when possible.

Chapter 3 Deserialize with ArduinoJson 106

3.11 Summary

In this chapter, we learned how to deserialize a JSON input with ArduinoJson. Here
are the key points to remember:

JsonDocument:

— JsonDocument stores the memory representation of the document.

StaticJsonDocument is a JsonDocument that resides in the stack.
— DynamicJsonDocument is a JsonDocument that resides in the heap.
— JsonDocument has a fixed capacity that you set at construction.

— You can use the ArduinoJson Assistant to compute the capacity.

JsonArray and JsonObject:

— You can extract the value directly from the JsonDocument as long as there is
no ambiguity.

— To solve an ambiguity, you must call as<JsonArray>() or as<JsonObject>().
— JsonArray and JsonObject are references, not copies.

— The JsonDocument must remain in memory; otherwise, the JsonArray or the
JsonObject contains a dangling pointer.

JsonVariant:

— JsonVariant is also a reference and supports several types: object, array,
integer, float, and boolean.

— JsonVariant differs from JsonDocument because it doesn’t own the memory;
it just points to it.

— JsonVariant supports implicit conversion, but you can also call as<T>().
The two modes:

— The parser has two modes: zero-copy and classic.

— It uses the zero-copy mode when the input is a charx.

— It uses the classic mode with all other types.

https://arduinojson.org/v6/assistant/

Chapter 3 Deserialize with ArduinoJson 107

— The zero-copy mode allows having a smaller JsonDocument because it stores
pointers to the strings in the input buffer.

In the next chapter, we'll see how to serialize a JSON document with ArduinoJson.

Continue reading...

That was a free chapter from “Mastering ArduinoJson”; the book contains seven chap-
ters like this one. Here is what readers say:

This book is 100% worth it. Between solving my immediate problem in
minutes, Chapter 2, and the various other issues this book made solving
easy, it is totally worth it. | build software but | work in managed languages
and for someone just getting started in C++and embedded programming this
book has been indispensable. — Nathan Burnett

| think the missing C++course and the troubleshooting chapter are worth
the money by itself. Very useful for C programming dinosaurs like myself.
— Doug Petican

The short C++section was a great refresher. The practical use of Arduino-
Json in small embedded processors was just what | needed for my home
automation work. Certainly worth having! Thank you for both the book
and the library. — Douglas S. Basberg

For a really reasonable price, not only you'll learn new skills, but you'll also be one of
the few people that contribute to sustainable open-source software. Yes, giving
money for free software is a political act!

The e-book comes in three formats: PDF, epub and mobi. If you purchase the e-book,
you get access to newer versions for free. A carefully edited paperback edition is
also available.

Ready to jump in?
Go to arduinojson.org/book and use the coupon code THIRTY to get a 30% discount.

Tk g fo g iyt
{Soud

https://arduinojson.org/book/

	Cover
	Contents
	Deserialize with ArduinoJson
	The example of this chapter
	Deserializing an object
	The JSON document
	Placing the JSON document in memory
	Introducing JsonDocument
	How to specify the capacity?
	How to determine the capacity?
	StaticJsonDocument or DynamicJsonDocument?
	Deserializing the JSON document

	Extracting values from an object
	Extracting values
	Explicit casts
	When values are missing
	Changing the default value

	Inspecting an unknown object
	Getting a reference to the object
	Enumerating the keys
	Detecting the type of value
	Variant types and C++ types
	Testing if a key exists in an object

	Deserializing an array
	The JSON document
	Parsing the array
	The ArduinoJson Assistant

	Extracting values from an array
	Retrieving elements by index
	Alternative syntaxes
	When complex values are missing

	Inspecting an unknown array
	Getting a reference to the array
	Capacity of JsonDocument for an unknown input
	Number of elements in an array
	Iteration
	Detecting the type of an element

	The zero-copy mode
	Definition
	An example
	Input buffer must stay in memory

	Reading from read-only memory
	The example
	Duplication is required
	Practice
	Other types of read-only input

	Reading from a stream
	Reading from a file
	Reading from an HTTP response

	Summary

	Continue reading...

